banner_microscopic imitations_LVD_01.jpg

MICROSCOPIC IMITATIONS - INFINITIVE REFLECTIONS

The project Microscopic Imitations aims to increase the potential of natural light phenomena in microscopic structrures of organisms and convert them into efficient, functional light objects. Exploring natural light phenomena like reflection, absorption, transportation, interference, scattering and refraction and mimic them to improve the industry and optimize lighting design. 

Inspiration from nature

What can nature and its smallest life-forms teach us? These small life-forms are the starting point of Lilian van Daal’s research.

 

How can we create the greatest possible light output with a minimal light source by imitating natural principles? Or how can we create structural coloring instead of using polluting pigments by imitating natural principles?

These kind of questions will be part of the research and light will be explored in it's broadest sense. The project will be a symbioses of design, physics, biology and technology. 

 

The research project 'Microscopic Imitations - Infinitive Reflections' into the materialisation of natural light phenomena has led to three directions of development, which all highlight a different layer of light and colour.

Structural colour

Together with microbiology company Hoekmine, research has been started into the use and application of bacteria that cause structural colour. By making these applicable to three-dimensional structures in combination with light, an enormous diversity of colour shades is created. This may make chemical pigments redundant in the future. This research will be continued.

beeld_Lilian van Daal_microscopic imitations_groot.jpg
12.jpeg

“In the right light, at the right time, everything is extraordinary.” - Aaron Rose

"If nothing on earth absorbed light, the planed would be lifeless and cold."

 

Reflection

 

An investigation into the positioning of reflective fish scales, leading to precisely controlled reflections. The software and technology of Physionary and Luximprint respectively allow me to mimic this principle. By combining these new technologies, we are able to direct incoming light to a point in an extremely controlled and efficient manner, allowing a controlled image to be projected and optically increasing the output. This results in an extremely efficient light object.

Polarization

 

Polarization microscopy was studied here. This is a method that is used to observe nanostructures in nature. With this principle, the light beam is interrupted or manipulated by an intervening object. This principle makes a whole new spectrum of light visible that is normally only visible with a polarising microscope. I find the beauty generated by this method fascinating. I want to share with the general public what is normally reserved for researchers. The challenge was to create a 3D reality from a 2D observation.

_DSC5886.jpg
Microscopic Imitations_01.jpg
Infinitive reflections_02.jpg
Infinitive reflections_01.jpg

This research with support of het Stimuleringsfonds

Collaboration: Luximprint 

Concept and design: Lilian van Daal